‘Molten-globule“ state accumulates in carbonic anhydrase folding
نویسندگان
چکیده
منابع مشابه
Mechanism of polyethylene glycol interaction with the molten globule folding intermediate of bovine carbonic anhydrase B.
Polyethylene glycol has been shown to bind to the molten globule intermediate on the bovine carbonic anhydrase B folding pathway. The mechanism of this interaction has been extensively probed. Polyethylene glycol (PEG) binds weakly to the molten globule first intermediate as measured by hydrophobic interaction chromatography, but PEG does not bind to either the native state or the second interm...
متن کاملMolten-globule state of carbonic anhydrase binds to the chaperone-like alpha-crystallin.
alpha-Crystallin, a multimeric protein, exhibits chaperone-like activity in preventing aggregation of several proteins. We have studied the chaperone-like activity of alpha-crystallin toward heat-induced aggregation of bovine and human carbonic anhydrase. Human carbonic anhydrase aggregates at 60 degrees C, while bovine carbonic anhydrase does not aggregate significantly at this temperature. Re...
متن کاملAn enzymatic molten globule: efficient coupling of folding and catalysis.
A highly active, monomeric chorismate mutase, obtained by topological redesign of a dimeric helical bundle enzyme from Methanococcus jannaschii, was investigated by NMR and various other biochemical techniques, including H/D exchange. Although structural disorder is generally considered to be incompatible with efficient catalysis, the monomer, unlike its natural counterpart, unexpectedly posses...
متن کاملEvidence for a molten globule state as a general intermediate in protein folding.
The folding of globular proteins occurs through intermediate states whose characterisation provides information about the mechanism of folding. A major class of intermediate states is the compact 'molten globule', whose characteristics have been studied intensively in those conditions in which it is stable (at acid pH, high temperatures and intermediate concentrations of strong denaturants). In...
متن کاملThe molten globule state is unusually deformable under mechanical force.
Recently, the role of force in cellular processes has become more evident, and now with advances in force spectroscopy, the response of proteins to force can be directly studied. Such studies have found that native proteins are brittle, and thus not very deformable. Here, we examine the mechanical properties of a class of intermediates referred to as the molten globule state. Using optical trap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: FEBS Letters
سال: 1984
ISSN: 0014-5793
DOI: 10.1016/0014-5793(84)80020-4